
DESCRIPTION-DRIVEN GENERATION OF 3D HUMANOIDS 
WITHIN AUTHORING 744 

V. Fernández-Carbajales*, J.M. Martínez* and F. Morán♣ 

Grupo de Tratamiento de Imágenes 
 

*Escuela Politécnica Superior, Universidad Autónoma de Madrid, 
Av. Francisco Tomás y Valiente, 11, Ciudad Universitaria de Cantoblanco, 

Crta. Colmenar Viejo, km. 15, E-28049 Madrid, SPAIN 
{Victor.Fernandez,JoseM.Martinez}@uam.es 

http://www-gti.ii.uam.es/ 
 

♣E.T.S. Ing. Telecomunicación, Universidad Politécnica de Madrid, 
Ciudad Universitaria s/n 
E-28040 Madrid, SPAIN 

Francisco.Moran@gti.ssr.upm.es 
http://www.gti.ssr.upm.es/ 

 
 
Keywords: Graphics, Descript Metadata and 3D content. 

Abstract 

This paper presents a new trend within the Authoring744 
research initiative: the creation of 3D humanoids. Author-
ing744 proposes the creation of content using descriptions 
that drive content synthesis. Here we present the first steps 
towards the generation of 3D humanoids and their future 
animation within the Authoring744 framework, which pro-
poses to use the MPEG-7 and MPEG-4 standards for, respec-
tively, semantically describing and representing content. One 
of the main objectives is the creation of more intuitive and 
easier to use 3D content authoring tools. 

1 Introduction 

Currently, the creation of 3D contents is achieved with not 
very intuitive programs and requires that the 3D content au-
thor follow long and costly learning curves. In addition, usu-
ally these programs do not use standard representation for-
mats, which would make it possible to interchange authored 
content among them, but use instead their own format for 
optimizing 3D content handling. 
 
Since its early development phases, MPEG-4 [1] has ad-
dressed, among other more well known topics, the standardi-
zation of (2D, 3D and 4D) graphics representation formats. 
Therefore, MPEG-4 is a good candidate, at least from a tech-
nical point of view, for overcoming the limitation in the inter-
operability among different graphics products: authoring 
tools, story-editors, players, etc. Regarding authoring, it 
seems more natural to describe what we want than to use the 
common 3D authoring tools. The Autoring744 research initia-
tive envisioned [2] the use of high-level descriptions in order 
to ease the creation of multimedia content. First results [3] 

showed that the vision could reach promising results, al-
though those results were constrained to editing multimedia 
scenes composed by different media arranged in a spatio-
temporal synchronized scenario. 
 
Authoring744 proposes the use of MPEG-4 [1] for content 
representation and MPEG-7 [4] for content description (both 
structurally and semantically), promoting the use of standards 
instead of proprietary formats (although adaptation or migra-
tion to them should be relatively easy). 
 
This paper introduces the creation of 3D humanoids within 
the Authoring744 framework [3]. 

2 State of art 

Currently, the authoring of 3D contents is achieved with pro-
grams that are very complex for the average users, with long 
curves of understanding and learning. Maya and 3ds max are 
among the most popular and powerful programs, and cur-
rently they are at least the starting point for the creation of 3D 
animated graphics. 
 
Additionally to the standard interface for 3D content author-
ing, these programs usually provide different plug-ins for 
added functionalities: creation of humanoids, architectural 
models, particle systems, or clothes; texturing of eyes and 
skin; and so on. The problem of interchanging designs be-
tween programs creates difficulties in the collaborative au-
thoring of complex 3D scenes by different work groups using 
different tools: e.g., a design created in Maya 6.0 is not port-
able to 3ds max 7.0. This inconvenient could be solved easily 
with the use of a standard representation format, namely 
MPEG-4 AFX [5]. 
Regarding the complexity of use, more intuitive programs 
could be designed based on the creation driven by descrip-



tions of the content we want to generate, for example, in the 
case of humanoids authoring the metaphor for the user inter-
faces will be the “robot portrait” (identikit picture). 
 
There are plenty of standards (both de jure and de facto) for 
the creation of 3D content. In the first place, we have 
OpenGL, DirectX, etc.: standards which have an Application 
Programming Interface (API) for writing applications that 
create and manage 3D content via “methods” of that API. In 
order to run such programs, only the (appropriate version of 
the) corresponding library or drivers should be installed in the 
rendering terminal. The MPEG-4 [1] standard (like 
VRML97 [8]) has another philosophy, as it is based on stan-
dardizing the representation of the content, not the way for 
creating it. Therefore, the only requirement for interoperabil-
ity is that the authoring tools and the players are compliant 
with the specified MPEG-4 representation format. 
 
Another way for authoring 3D animated content is the use of 
a script describing the scene, both structurally and semanti-
cally, to create (this was part of the Authoring744 vision [2]). 
In the script file, the humanoids, the dialogs, the foreground 
of the scene, the soundtrack, etc. can be described and the 
system may consult content databases for searching or may 
synthesize the contents required for the scene. There are dif-
ferent systems proposing the script approach (although we 
have found none where the creation of content is part of the 
system). For example, in the EMM system [6] the primitive 
objects and actions are pre-stored in the system databases and 
knowledge system, and the script allows to combine them in 
order to create animated movies with their “base” objects and 
events. Authoring744 [2] objective targets both the creation 
of base objects and the scripting based on them. Currently, we 
are focusing on the creation of 3D content. 
 
MPEG-4 was originally based on VRML97 [8], but has added 
huge improvements to it. In what concerns media synchroni-
zation issues (tackled in MPEG-4’s Part 1, “Systems”), the 
biggest advantage is probably that MPEG-4 supports stream-
ing while VRML97 does not. But also, and more importantly 
in the context of this paper, MPEG-4 has greatly extended the 
3D graphics assets of VRML97. In its two first versions, 
MPEG-4’s Part 2, “Visual”, already featured the FBA (Face 
and Body Animation) toolset for the efficiently compressed 
animation of humanoids. More recently, a whole new and 
independent Part of MPEG-4, Part 16, “AFX (Animation 
Framework eXtension)” [5], has been devoted to 3D graphics, 
and it contains specific tools for the animation of completely 
generic virtual characters, based on the BBA (Bone-Based 
Animation) paradigm. 
 
FBA defines control points for animating the humanoid’s face 
and body, providing knobs on the face for expressing emo-
tions by moving all its important parts (eyes, eyebrows, lips, 
ears, etc.), and on the body joints (articulations). The anima-
tion of humanoids with the BBA tools is based on the creation 
of a humanoid with a skeleton, i.e., a group of bones with 
their associated muscles and skin. Each bone has its own axis 
system and is then integrated in the common skeleton axis. 

With this integration, also kinematics constraints are imposed. 
All bones can suffer rotation, scaling and translation, allowing 
the deformation and animation of the “base” humanoid as we 
wish (the modifications propagate to the skin associated to the 
bones). The BBA specification is more powerful than FBA 
because BBA offers more usage functionalities for generic 
virtual characters, and because the control points of FBA are 
not as useful as the bones of BBA for the generation and ani-
mation of humanoids. Besides, BBA improves the quality of 
the specified graphics, as the system of muscles coupled to 
the bones generates more realistic movements. 

3 Objectives 

One of the main objectives of the Authoring744 initiative [2] 
is the creation of authoring tools which are more intuitive for 
the average user. In the scope of this paper, we are interested 
in the creation of 3D humanoids via high-level descriptions, 
in a similar way “robot portraits” are generated, that is, fol-
lowing a high-level semantic description and modification of 
it. The final aim is to ease the creation of this type of 3D con-
tent to the common user (for example, for customizing the 
user’s avatar in a computer graphics game). Afterwards, the 
integration of their animation within this intuitive authoring 
framework will be provided. 
 
Regarding the creation of 3D content, there is another objec-
tive regarding the independence of the created content (or its 
authored description) from the rendering environment, that is, 
the terminal and the network delivering the description (if the 
synthesis is done at the terminal). In any moment, the visuali-
zation of the contents must adapt to the conditions of the en-
vironment, looking for the best quality of this contents, but 
taking into account parameters as monitoring capacity, ren-
dering capacity, processing capacity, etc. of the terminal: the 
described content does not change (in its “being” or structure) 
depending on where it is played, but should be adapted to the 
terminal and network characteristics at each moment. 
 
The 3D humanoids descriptions will follow the MPEG-7 [4] 
framework, and we aim to contribute the extensions for sup-
porting 3D content description to the MPEG-7 standardiza-
tion process (future MPEG-7 amendments). Besides this, 
contributions to BBA are also expected (in fact, we have al-
ready contributed one upgrade to the BBA module MPEG-4’s 
Part 5, “Reference software”). 

4 From deformation description to content 
modification 

The idea for creating the humanoids via the “robot portrait” 
metaphor is based on the possibilities offered by BBA for 
modifying a base humanoid via BBA commands. The ex-
pected functionalities of the “robot portrait” application will 
be presented by example over Samuel, the gargoyle shown in 
Figure 1 in its original form. 



 
Figure 1: Original Model 

 

 
Figure 2: Left Leg 10% Longer 

 

 
Figure 3: Chopped Off 

 

 
Figure 4: Head Twice As Big 

 
The first example is the lengthening of Samuel’s left leg by a 
10%. For performing this deformation, all bones of Samuel’s 

PEG-4 humanoid 
how that “high-level” descriptions (e.g., longer leg, bigger 

leg must be scaled by 1,1 times in the y axis (which corre-
sponds to the longitudinal direction of this particular bone), 
but not in the x or z axes, to avoid a simultaneous widening of 
the leg. The result of this transformation is shown in Figure 
2. The second example is doubling the size of Samuel’s head. 
For performing this deformation, we need to scale the bone of 
head by 2 its three axes (x, y, and z). The result of this trans-
formation is shown in Figure 4. The third example is the 
amputation of the Samuel’s left arm. For this, we scale Sam-
uel’s left arm to zero in all of its coordinates. The result of 
this transformation is shown in Figure 3. 
 
All these examples of modifications of an M
s
head, no left arm) can be written for deforming (and animat-
ing) a base humanoid, as result of the user’s interaction, 
which consists in providing parameterized descriptions within 
an application. These descriptions (to be specified within the 
MPEG-7 framework) will be mapped to specific modifica-
tions in BBA to a base humanoid. We also plan to provide 
descriptions to create the base humanoid from scratch. 

5 Software architecture 

 
Figure 5: Software architecture 

 
Following the cture [3], the 
oftware architecture for the authoring of humanoids via de-

pplication. This layer controls the inputs/outputs of the sys-

 Authoring744 high-level archite
s
scriptions can be divided in two layers, as shown the Figure 
5: UIL (User Interface Layer), and the PL (Processing Layer). 
 
The UIL is in charge of the interactions with the user of the 
a
tem from/to the user. The inputs that the UIL layer handles 
are two: the selection (or creation in a near future) of the base 
humanoid and the deformation commands. The UIL captures 
from the user the base humanoid over which the deformations 
will have effect. The deformation commands are to be se-
lected within a set of instructions for modifying the character-
istics of the base humanoid: height, weight, musculature, etc. 
These commands can be associated in scripts which can be 
made persistent for future reuse. The UIL manages two out-
puts: the visualization of the humanoid that the user is model-
ling and the corresponding MPEG-7 [4] and MPEG-4 [1] 
schemas. Regarding visualization, each new command up-



dates the rendering of the humanoid (and there is the possibil-
ity of redo and reset), after the MPEG-7 description and 
MPEG-4 nodes have been updated via the processing layer. 
The schema views (MPEG-7 description and MPEG-4 nodes) 
allow the advanced user to modify the humanoid directly. 
Any change of the schemas also triggers a revisualization of 
the humanoid. The MPEG-4 content (i.e., 3D humanoids 
described thanks to BBA) could be transcoded to feed an 
appropriate player for its rendering (currently there is no need 
of this module, and therefore it is shaded in grey in the dia-
gram). 
 
The PL is in charge of the parsing/translation of the com-

ands launched by the user to the high-level description in 

we have checked the power of using MPEG-4’s 
BA [5] for the creation, deformation, and animation of vir-

m
MPEG-7 and the translation of the MPEG-7 descriptions into 
MPEG-4. Currently the approach is to use a base humanoid in 
MPEG-4 and to modify it via MPEG-7 descriptions, although 
the target is to have a whole MPEG-7 description soon allow-
ing full creation in MPEG-7 and not only deformation. After 
each change in the MPEG-7 description, the 724Transcoder 
module translates the new description of the humanoid, and 
afterwards the PL triggers the UIL player for updating the 
rendering. 
 
Currently, 
B
tual humanoids. We have developed an application that im-
plements some parts of the system presented in Section 5, 
namely part of the 724Transcoder. The current development 
of this module covers the application of deformations to a 
base humanoid using BBA. Starting from a base humanoid, 
other “derived” humanoids may be created by selecting a set 
of deformations to be applied to the different accessible 
bones. Both the base and modified humanoids are visualized, 
as can be seen in Figure 6. The applied transformations are 
saved and can be applied to other base humanoids (the defor-
mations applying only if the same bone exist). 
 

 
Figure 6: Screen Shot Application 

 
The base hum D modelling 

 that can output content MPEG-4-compliant files/bit-

 the 
ifferent main windows: 

. 

oad, save, visualize, and transform human-

• 
 humanoid, after applying the transformations to the 

• 
eries of combo boxes and buttons allowing the 

 
Cu o apply up to 25 different 

ansformations (listed in Table 1) on any bone of the hu-

ocal and 
erefore leads to what are known in the 3D Graphics context 

hat, with a small amount of transformations, 
e can adapt in a fair way the humanoid to what we want to 

dled by the application 

anoid may be developed with any 3
tool
streams, and is used as the primary model for the “derived” 
humanoids, which are obtained by applying the chosen trans-

formations from the ones available in the GUI. A transforma-
tion is any modification that is performed on the humanoid by 
means of a high level command, like “get bigger”, “get 
shorter”, etc., and that is applied to individual bones or to 
groups of them, depending of the level of abstraction (cur-
rently only the complete skeleton level is implemented). 
 
In the Screen Shot Application in Figure 6, we can see
d
• Number 1 points at the window visualizing the base hu-

manoid. 
• Number 2 indicates the window visualizing the “derived” 

humanoid
• Number 3 points at the toolbar giving access to the differ-

ent menus: l
oids. 
Number 4 is the MPEG-4 file code that defines the “de-
rived”
base one. 
Number 5 indicates the most important part of the applica-
tion: the s
user to choose and apply a deformation on a bone or group 
of bones of the humanoid. 

rrently the application allows t
tr
manoid – actually in any of the 88 bones that can be handled 
by 3ds max 7.0 and INT’s plug-in for exporting these bones 
into the MPEG-4 file format. Any transformation can be ap-
plied to a selected bone only, or propagated to all its “inheri-
tors” inside the MPEG-4 structure of the humanoid. 
 
Note that the coordinate system of each bone is l
th
as MCs (Modelling Coordinates), as opposed to WCs (World 
Coordinates). It is chosen by the creator of the bone [5], and 
so the axes mentioned in Table 1 are completely dependent 
on that choice. 
 
Our tests show t
w
“see”, like in a “robot portrait”. 
 

Table 1 Modifications han

Number Transformation Description 
1 ling 

it in the
Slim Shrink the bone by sca

 x axis. 
2 Fatten Stretch the bone by scaling 

it in the x axis. 
3 Shorten Shrink the bone in the y 

axis. 
4 Lengthen Stretch the bone in the y 

axis. 
5 Smooth Shrink the bone in the z 

axis. 
6 Get_Fat Stretch the bone in the z 

axis. 
7 Make_Slender x Shrink the bone in the 



axis, and stretch it in the y 
axis. 

8 Make_Dwarf 
nd stretch it in the x 

Shrink the bone in the y 
axis, a
and z axes. 

9 Bigger Stretch the bone in the x, y 
and z axes. 

10 Reduce Shrink the bone in the x, y 
and z axes. 

11 Amputate  
ally eliminates 

Shrink the bone to zero,
which virtu
it. 

12 Separate_Origin 
rld coordinates origin. 

Separate the bone from the 
wo

13 Mover_Close_Origin 
f 

Brings the bone over to the 
origin of coordinates o
the world. 

14 Move_Right 
x axis. 

Moves the bone towards 
the positive 

15 Move_Left Moves the bone towards 
the negative x axis. 

16 Take_Up Moves the bone towards 
the positive y axis. 

17 Take_Down Moves the bone towards 
the negative y axis. 

18 Bring_Over Moves the bone towards 
the positive z axis. 

19 Separate Moves the bone towards 
the negative z axis. 

20 Twist_Right Turn clock-wise around 
the positive y axis. 

21 Twist_Left Turn counter-clock-wise 
around the positive y axis. 

22 Turn_Right Turn clock-wise around 
the positive z axis. 

23 Turn_Left Turn counter-clock-wise 
around the positive z axis. 

24 Raise Turn clock-wise around 
the positive x axis. 

25 Descend Turn counter-clock-wise 
around the positive x axis. 

7 Current and future wor

 abstraction levels of the 
ribe the humanoid in 

riptions, both for humanoids and transformations 
ill be represented using the MPEG-7 [4] framework, our 

The extension of Authoring744 from multimedia scenarios 
of 3D content has started, targeted for 

ion and animation of virtual humanoids. 

nsmit it 
uch more compactly than through the equivalent MPEG-4 

This work has been partially supported by the 6th Framework 
an Commission, within its research 
: On-Line GAming (OLGA). The 

under project 
IN2004-07860 (MEDUSA). 

[1] R. Koenen (ed.): “MPEG-4 Overview v21”, ISO/MPEG doc. 
. 

ez and F. Morán: “From Descriptions To Content: 

[5] 

[8] 

k 

Currently we are creating the higher
humanoid description, allowing to desc
terms of groups of bones composing high level units, like 
torso, head, neck, arm, etc. We are working in different levels 
of abstractions, e.g., hand versus palm and fingers. Also, the 
transformations will be mapped to a more natural set of ex-
pressions. 
 
These desc
w
aim being to propose new description tools. More long-term 
work will include the animation of the humanoid within the 
proposed framework. 

8 Conclusion 

edition to the creation 
instance at the creat
Currently preliminary results show that the approach is also 
valid in this scenario and that the authoring of avatars may be 
easy for any user, therefore paving the ground for any other 
applications of convenient personalization of avatars. 
 
Besides the easy of creation of 3D content, the associated 
MPEG-7 description that we foresee will allow to tra
m
representation, in general more complex and bigger. Of 
course this approach implies that the terminal should be able 
to run not only an MPEG-4 player, but also a 724Transcoder. 
Adaptability will be another major functionality regarding the 
description and its translation to MPEG-4. 

Acknowledgements 

Programme of the Europe
project FP6-IST-1-507926
authors wish to thank Marius Preda and Octavian Folea of 
INT (Institut National des Télécommunications) for their 
support regarding AFX, and Fabrice Léte of Larian Studios, 
who allowed the use of the Samuel character. 
 
This work is also supported by the Ministerio de Ciencia y 
Tecnología of the Spanish Government 
T

References 

N4668, 2002
[2] J.M. Martín

Inverting The Sense”, Proc. Intl. Conf. Media Futures, 111-114, 
2001. 

[3] J.M. Martínez and F. Morán: “Authoring 744: Writing Descrip-
tions to Create Content”, IEEE Multimedia October/November, 
94-98, 2003. 

[4] J.M. Martínez (ed.): “Overview of the MPEG-7 standard v9.0”, 
ISO/MPEG doc. N5525, 2003. 
MPEG (Moving Picture Experts Group), formally ISO/IEC 
JTC1/SC29/WG11: “ISO/IEC 14496-16” (a.k.a. “MPEG-4 Part 
16: Animation Framework eXtension”), ISO/IEC standard, 
2003. 

[6] H. Seo, F. Cordier and N. Magnenat-Thalmann: “'Synthesizing 
Animatable Body Models with Parameterized Shape Modifica-
tions'”, ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 120-125, July 2003. 

[7] J. Shen, T. Aoki, H. Yasuda and S. Miyazaki: “Emovie Crea-
tion By Rule-Based Reasoning From The Director’s View-
point – E-movie: Computer Animation & Real Images”, 
Knowledge-Based Media Analysis for Self-Adaptive and Agile 
Multimedia Technology, 119-126, 2004. 
VRML (Virtual Reality Modelling Language) Consortium Inc. 
(now Web3D Consortium Inc.) and ISO/IEC JTC1/SC24: 
“ISO/IEC 14772 1:1997” (a.k.a. “VRML97”), ISO/IEC stan-
dard, December 1997. 


